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ABSTRACT: Forensic DNA interpretation is transitioning from manual interpretation based usually on binary decision-making toward com-
puter-based systems that model the probability of the profile given different explanations for it, termed probabilistic genotyping (PG). Decision-
making by laboratories to implement probability-based interpretation should be based on scientific principles for validity and information that
supports its utility, such as criteria to support admissibility. The principles behind STRmixTM are outlined in this study and include standard
mathematics and modeling of peak heights and variability in those heights. All PG methods generate a likelihood ratio (LR) and require the for-
mulation of propositions. Principles underpinning formulations of propositions include the identification of reasonably assumed contributors.
Substantial data have been produced that support precision, error rate, and reliability of PG, and in particular, STRmixTM. A current issue is
access to the code and quality processes used while coding. There are substantial data that describe the performance, strengths, and limitations
of STRmixTM, one of the available PG software.
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A common binary method, dating to the 1990s, for the inter-
pretation of short tandem repeat (STR) typing results from foren-
sic casework analyses, while valid (1–3), had two primary
limitations: First, for some specimens, a substantial amount of
profile data could not be used for calculating statistical weight,

resulting in more inconclusive results; and second, a number of
laboratories faced challenges in interpretation of complex foren-
sic DNA mixtures.
In recent years, more sophisticated approaches to applying the

fundamental principles of DNA mixture interpretation have been
incorporated into customized software that expands the capabili-
ties of the forensic analyst. These tools bring together refined
methods of biological modeling, probability, and computational
power that provide more meaningful empirical assignments of
evidentiary weight.
Substantial data have been generated and accumulated that

demonstrate the utility of probabilistic genotyping (PG). As
exemplified herein with one software solution for PG,
STRmixTM, this document focuses on sound practices for forensic
DNA mixture interpretation, the attendant statistical analyses
using STRmixTM, and other application issues related to admissi-
bility. The topics covered in this effort include:
• An introduction to PG, the likelihood ratio (LR), and setting

propositions,
• Validity of STRmixTM,
• A discussion about admissibility, peer-review, code disclo-

sure, and independent testing of STRmixTM,
• A discussion on assigning the number of contributors, and
• The effect of relatives in mixtures.

This resource should guide the reader in becoming familiar
with the salient features of STRmixTM, as well as its strengths
and limitations.

Introduction to Probabilistic Genotyping

The interpretation of forensic DNA mixture evidence is mov-
ing toward PG. The Scientific Working Group on DNA Analysis
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Methods (SWGDAM) defines PG as “the use of biological mod-
eling, statistical theory, computer algorithms, and probability dis-
tributions to calculate likelihood ratios (LRs) and/or infer
genotypes for the DNA typing results of forensic samples. . .”
(4). Biological modeling is based on numerical criteria that can
be encoded into the software to aid in interpretation of DNA
profile characteristics such as peak height, base pair size, stutter,
DNA degradation, allele dropout, and drop-in. The conceptual
basis for PG was in place by 2000 (5–9). Advances to this initial
concept were made and encoded in the software LoComatioN
(10). Workable PG solutions were not implemented into routine
forensic casework until about 2009 following advancements and
the development of other programs, such as TrueAllele� (11).
Broadly, there are two categories of PG software: semi-contin-

uous and fully continuous. The key difference between them is
that semi-continuous models do not consider allele peak heights,
while fully continuous methods make direct use of such informa-
tion. Both the semi- and fully continuous methods assess the
probability of observing the mixed DNA profile given proposed
genotypes for the contributors. The semi-continuous methods
assign a probability to the profile given a genotype combination,
and the number is in the continuous interval [0,1]. The mathe-
matical details are not described herein, but all the PG solutions
utilize some form of “nuisance parameter” for a factor that must
be accounted for in the process. In most semi-continuous appli-
cations, this parameter is the assignment of the probability of
allele dropout. The semi-quantitative model by Slooten (12) in
the software product MixKin removes the nuisance parameter by
the preferred method of integration. The programs LRmix (13),
LikeLTD (14), or Lab Retriever (15) use plug-in values or the
value derived by the method of maximum likelihood estimation
(MLE) rather than from the integral. In the case of LRmix, an
allele dropout value is assigned, often following a sensitivity
analysis; LikeLTD assigns the nuisance parameter by MLE; and
in the case of Lab Retriever, this value is assigned using a form
of logistic regression that does not account for degradation (see
16; for a review of some logistic regression methods). Lab
Retriever contains an additional approximation to a population
genetic model introduced for computational convenience (17).
This approximation is unlikely to have any large effect.
STRmixTM, TrueAllele� (11), and GenoProof Mixture 3 (18) are

fully continuous methods that are based on a Markov chain Monte
Carlo (MCMC) resampling method (19). The use of MCMC is not
novel and has been used to solve many complex problems within
chemistry, physics, biology, statistics, and computer science. The
continuous model software Kongoh (20) utilizes MLE. Other con-
tinuous solutions of which we are aware include LikeLTD-ht (21),
DNAmixtures (22,23), and EuroForMix (24).

Introduction to Likelihood Ratios (LRs)

The outputs of all PG software are LRs. The LR is a ratio of the
probability, the probability density, or quantities proportional to
either probability or density of some specific observations or find-
ings when considering two alternative (i.e., mutually exclusive)
propositions. As applied to forensic DNA typing, the ratio, in its
simplest form (i.e., a single-source specimen), expresses the prob-
ability of the DNA evidence if a person of interest (POI) rather
than an unknown individual is the source of the DNA.
Bayes’ theorem follows immediately from the laws of proba-

bility and in the current context may be expressed in the follow-
ing form: posterior odds = LR 9 prior odds.

Whatever the odds are on the person of interest (POI) being a
contributor without considering the DNA evidence (i.e., the prior
odds), this theorem describes that these odds should be increased
(or decreased) by LR times upon considering the DNA evidence.
In practice, it is the LR rather than posterior odds that are typi-
cally presented in court.

Naming the Propositions

Ian Evett in “What is the probability this blood came from
that person?” (25) recognized the work of Dennis Lindley on
probability and Bayesian theory. Evett used the terms C (con-
tact) and �C (noncontact) to describe alternate propositions used
for the LR. Subsequently, Hp and Hd were introduced as the
prosecution and defense hypotheses, respectively (26). The pros-
ecution proposition is usually straightforward (i.e., the defendant
is the source of the DNA on the evidence), while the defense
proposition can vary substantially. Argument can arise about
assertions, such as:
• The expert should not assume what the defense proposition

may be,
• The defense is entitled to all propositions consistent with exon-

eration and should not be constrained to one proposition, and
• The defense is not obligated to provide a proposition.

Using the terms prosecution and defense may contribute to
some contention when considering propositions. Therefore, as
with the earlier C and �C espoused by Evett, alternate proposi-
tions without such descriptors might be sensible. Hp and Hd

could readily be replaced with, for example, H1 and H2 (15,27),
H1 and Ha (where “a” stands for alternate), or HC and H�C (refer-
ring to contributor and noncontributor), to avoid the implications
of the “p” and “d” labels.
The two propositions used for the LR must be exclusive, mean-

ing that they cannot both be true at the same time. They should
also be exhaustive (cannot both be false at the same time) within
the context of the specific case. For example, consider that the
prosecution asserts that the defendant is the source of the DNA,
and the alternate proposition is that the source of DNA is a random
person unrelated to the defendant. In this case, Hp and Hd may
both be false, for example, the DNA could be from the defendant’s
brother, in which case these propositions are not exhaustive. How-
ever, propositions should always be considered in light of the
accepted background information (I), and if a proposition is very
unlikely or impossible given I, then it need not be considered by
an analyst. In the context of the case discussed above in which I is
that the defendant has no brother, this possibility need not be con-
sidered. We direct the reader to Biedermann et al. (28) for a more
in-depth discussion on setting propositions.

Transfer and Persistence of DNA

The concept of hierarchy of propositions is well established
(28,29). Gittelson et al. (30) discussed this concept more
recently. Propositions are classified into four levels: offence,
activity, source, and subsource.
• Offence level propositions describe the issue for the fact fin-

der which is one of guilt or innocence.
• Activity level propositions describe the activity that deposited

the DNA.
• Source level refers to the origin of the body fluid or cell type

examined.
• Subsource level refers to the origin of the DNA (i.e., donor).
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Gittelson et al. (30) suggested a requirement for interpretation:

Due attention must be paid to the position in the hierarchy
of propositions that can be considered. This information
must be effectively conveyed to the court to avoid the risk
that an evaluation at one level is translated uncritically and
without modification to evaluation at a higher level.

They further stated:

We cannot emphasise the importance of this enough. A
DNA match may inform decisions about the source of the
DNA, but decisions about an activity, say sexual inter-
course vs. social contacts, involve additional considerations
beyond the DNA profile.

Transfer and persistence of DNA are relevant for an activity
level evaluation of the DNA results, whereas PG software and
other interpretation and statistics methods evaluate the DNA
results at the subsource level. Discussion of transfer and persis-
tence therefore has nothing to do with PG. However, a sub-
source level evaluation of the DNA results may be necessary for
evaluating the findings with regard to a pair of activity level
propositions.

Effect of Different Propositions When Using STRmixTM

The assignment of propositions should be made from the rele-
vant background information (30,31). The following issues
should be considered:
• Which, if any, of the known individuals may be reasonably

assumed to be contributors (30–32),
• The number of contributors to the profile (discussed later in

this paper) (33–37),
• How to deal with multiple POIs (30,31),
• How to deal with evidential items associated with neither the

POI nor the victim (30,31).

The effects of these considerations are summarized here.

Assumption of the Presence of an Individual’s DNA in a Mixture

If a genotyped person, say the complainant in a sexual assault,
can reasonably be expected to have donated DNA to the sample
and the profile suggests his or her presence, then that person
should be included under both the prosecution and defense
propositions.
There are three principles that could be applied when making

this decision.
First, any person should be assumed to be a contributor if the

presence of his or her DNA is reasonably expected and the mixture
is explained well by his or her inclusion. One reasonable expecta-
tion of the person’s DNA being present (e.g., Option 1 in Table 1)
is if the item of evidence is derived from an intimate sample of this
person such as a vaginal swab. This concept can reasonably be
extended to other items associated with the person, for example,
their clothing. Accordingly, it is important that any such assump-
tion of the presence of the person’s DNA be stated/documented.
Second, the contributor proposition should align with the sci-

entific explanation of the evidence informed by any legitimate
background information.
Third, reasonable alternate propositions consistent with non-

contribution should be considered. For example, in a mixed

DNA profile, it may be in the interests of the defense to include
any person’s DNA under both H1 and H2 as long as this inclu-
sion is consistent with his or her own noncontribution.

How to Deal with Multiple POIs

Consider a situation where there are two POIs termed P1
and P2. A crime stain is found, and the DNA mixture profile
can be explained fully if P1 and P2 are the contributors
(Table 2). For demonstration purposes, a two-person mixture is
assumed (but the three approaches described here can extend to
higher order mixtures). U stands for an unknown individual,
usually considered to be unrelated to either P1 or P2, although
in STRmixTM, this assumption may be relaxed to a relative in
most, but not all, of the situations illustrated below. Generally,
either Approach 1 or 2 (Table 2) is acceptable. Approach 2
has slightly more power to distinguish contributors from non-
contributors. It should be used when it aligns with the prosecu-
tion allegation.
Approach 3 runs the risk of a major contributor with a high

LR (if analyzed separately) “carrying” a noncontributor or a
weak/trace contributor with a low LR (if analyzed separately)
into the final high LR for P1 + P2 that could be misleading if
reported. This approach should be predicated on separate tests
for P1 and P2 which both return LRs >1. Approach 3 only
should be used in the unlikely event that background informa-
tion determines that the DNA must originate from both P1 and
P2 or neither of them.

How to Deal with Evidential Items not Demonstrably Associated
(Before DNA Testing) with Either the POI or the Victim

As an example, consider a situation in which a two-person
DNA mixture was recovered from somewhere not particularly
closely associated with the victim, such as a stain on a bedsheet
in a room at a house where a party occurred. The alleged victim,
V, states that she was raped in this room by the accused. The
stain can be explained as a mixture of the victim and the person
of interest, P.
Initially, five options for sets of propositions may be consid-

ered (Table 1). The contributor hypothesis may pose H1 as
V + P. The noncontributor hypothesis could be Option 1, 2, or
3 for H2 (or any pair or all three of these). Note that Option 1 is
almost always more favorable to the defendant (i.e., a lower LR)
than Option 2.
Option 3 suggests the presence of P but not V. It may be dif-

ficult for the defense to motivate this option in the context of
the case. This option requires that the DNA is from the person
of interest and another individual. This proposition asks for a
rejection of the victim’s statement and an explanation of P’s
DNA in the very room where the rape is alleged to have
occurred.

TABLE 1––Various options for the propositions H1 and H2. V is for victim,
P is the person of interest, and U is an unknown person.

H1 H2

V + P V + U Option 1
U + U Option 2
P + U Option 3

U + P U + U Option 4
U + V Option 5
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This leaves H2 as either V + U or U + U (whichever is con-
sidered to be the most reasonable given the case’s circum-
stances). Note that the option U + U will likely lead to higher
LRs than the other options. Using the Option 2 set, one could
misleadingly produce a very high LR from a major aligned with
V and a small scatter of trace alleles consistent with P. As
V + U is consistent with noncontribution and in the defendant’s
interest, we suggest that it should be used.
This approach would lead us to suggest Option 1, in which

we have assumed the presence of the complainant, V. This
would seem to run contrary to the SWGDAM (32) suggestion
that people only be used as conditioning genotypes if their DNA
is reasonably expected. One could easily state that no reasonable
expectation exists as the item is not strongly associated with
either P or V. However, the appearance of V under H1 comes
about because that is indeed the contributor allegation, and under
H2 because it is consistent with noncontribution and is in the
defense’s interests.
Options 4 or 5 may be used as exploratory investigations to

check the inclusion of V and P separately before proceeding to
the set actually used for the interpretation, which would be both
V and P for H1.
In very complex situations, a “search strategy” (akin to propo-

sition sets 4 and 5) may be the only recourse available to the
scientist. We note that this approach is suitable in an investiga-
tive framework, and some check of the potential for co-contribu-
tion should be made. An approach has been proposed for these
types of cases in section 4 of Buckleton et al. (31).

Applicability of Probabilistic Genotyping to Forensic DNA
Typing Results and Usage Matters

As the use of any tool or technique must be supported both sci-
entifically and for admissibility, we provide some information
about PG, and in particular, STRmixTM, to support its application
for interpretation of DNA profiles derived from forensic evidence.

The General Acceptance Test

General acceptance of the method is one of the Daubert
admissibility criteria (38) and is the primary criterion of the Frye
standard (39). Most PG software applications are based on estab-
lished mathematical principles. For example, the MCMC algo-
rithm is not novel (Markov published the first of his papers on
this topic in 1906). Other components of MCMC were devel-
oped in the middle of the twentieth century; “Monte Carlo

methods were born in Los Alamos, New Mexico during World
War II, eventually resulting in the Metropolis algorithm in the
early 1950s. . . MCMC was brought closer to statistical practical-
ity by the work of Hastings in the 1970s.” (40).
MCMC is a widely used technique and is considered a main-

stream statistical tool. It is used in real estate market prediction
(41), earthquake and rock fracturing (42), electricity capacity
modeling (43), weather prediction (44), betting (45), climate
(46), computational biology (47), computational linguistics (48),
genetics (49), engineering (50), physics (51), aeronautics (52),
stock market prediction (53), and social science (54). The key
papers describing the algorithms used within the MCMC are
Metropolis et al. (55), with 37,506 cites in Google Scholar (as at
May 27, 2018), and Hastings (56), with 12,229 cites providing
some measure of their widespread acceptance and use. Searching
scientific literature for “Markov chain Monte Carlo” returns
more than 512,000 records.
There is substantial interest in PG as evidenced by the number

of modern PG software programs that have been developed, or
are being developed, by researchers with very strong mathemati-
cal or statistical backgrounds (11,13,19,22,57–62). These efforts
and recommendations indicate strong support for the general
acceptance of PG. While different PG software programs tend to
differ in some details, there is a very substantial commonality of
principle between these software tools (i.e., they all produce LRs
and all model the probability or probability density of the profile
given all plausible genotypes). The differences among programs
do not indicate a lack of consensus on general acceptance of PG
as an analytical/statistical method or of individual software pro-
grams. These efforts are strong support for the general accep-
tance of PG. Both SWGDAM (4) and ISFG (63,64) give
recommendations for validation for laboratories that adopt PG
for mixture interpretation.
At preparation of this manuscript, STRmixTM is in use in at

least 51 laboratories worldwide as their predominant method for
the interpretation of DNA profiles in forensic casework. The lab-
oratories using STRmixTM reside in the United States (n = 36),
Australia (n = 7), England (n = 2), Scotland (n = 1), Republic
of Ireland (n = 1), Canada (n = 2), Finland (n = 1), and New
Zealand (n = 1).

Peer-review, Independent Testing, and Further General
Acceptance

Peer-review is another criterion of the Daubert standard that
may be considered by the gate keeper. Oxford (https://en.oxf

TABLE 2––Three approaches to assigning propositions when there are multiple POIs. Propositions are H1 and H2. P1 and P2 are POIs, and U is an unknown
person.

Approach 1 Approach 2 Approach 3

H1 H2 H1 H2 H1 H2

P1 + U U + U The results are given in
the report

P1 + U U + U The results are in the notes and
not the report. They are used in
an exploratory manner to inform
the inclusion of P1 and P2
separately before testing them
both together.

P1 + U U + U The results are in the notes and
not the report. They are used in
an exploratory manner to inform
the inclusion of P1 and P2
separately before testing them
both together.

P2 + U P2 + U P2 + U

P1 + P2 The result is in the notes
and not the report. It is
used to check that both
P1 and P2 may be
included together.

P1 + P2 P1 + U The results are given in the report P1 + P2 The results are given in the report
P2 + U
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orddictionaries.com/definition/peer_review) defines peer-review
as: “Evaluation of scientific, academic, or professional work by
others working in the same field.” The scientific concepts that
underpin PG software are verified by publication in peer-
reviewed journals and wider comments published elsewhere
(11,13,16–19,21–23,30,33,34,36,59,61,65–95).
Additional peer-review has been achieved for many PG solu-

tions by those laboratories that performed internal validation
studies (11,81,96). Such internal validation studies typically are
not published, as journals tend not to find such studies novel.
These data, however, are available for review, if desired by the
courts, as part of the formal discovery process, and some are
available online (97–100).

PG and the PCAST Report

Recently, the President’s Council of Advisors on Science and
Technology (PCAST) proffered criticisms about the foundational
validity of some forensic disciplines (101). While the 2016
PCAST Report favored the use of PG for forensic DNA mixture
interpretation, PCAST neither evaluated the current state-of-
knowledge regarding PG at the time of its review nor up to dis-
bandment of the Council in 2017. PCAST considered validity
proven for the use of PG for up to three-person DNA mixtures
where the minor contributor is greater than 20% of the mixture
(amended to the POI being 20% in the Report addendum) and
for two-person mixtures where the minor profile is greater than
10%. If taken literally, according to PCAST one cannot reliably
interpret mixtures—to include minor as well as major contribu-
tors—where the minor contribution is below 10% (footnote 216
of the original report). This statement relative to the major con-
tributor is obviously unfounded. It is likely that PCAST was
referring to assessment of the minor and assumed the major
could be analyzed. PCAST also incorrectly perceived gaps in
proof of validity with high contributor numbers and mixture con-
tributions <20%.
The PCAST Report assessed proof of validity by empirical

studies published in the peer-reviewed literature as of 2016 and
did not review the totality of available data even at that time.
This partial assessment is unfortunate, as publication of all vali-
dation studies is difficult as many journals preclude or discour-
age publication of most internal validation studies and many
laboratories do not see it as their role to publish. By taking this
limited stand, the PCAST committee members did not avail
themselves of the totality of data that was accessible at the time
of their review and subsequent report being issued.
Fortunately, validation data exist, peer-reviewed literature is

available, and limitations of the applications are described. One
example of such work with STRmixTM (81) is summarized in
Table 3. This work covers 1–5 person mixtures at much greater

ratios and lower templates than referred to in the PCAST
Report.
Recently, the internal validation data from 31 laboratories

using or validating STRmixTM were compiled and interpreted
(hereafter “internal compilation study” 96) specifically to address
the points raised within the PCAST Report. This study con-
cluded that this combined dataset “demonstrates a foundational
validity of, at least, the STRmixTM software method for complex,
mixed DNA profiles to levels well beyond the complexity and
contribution levels suggested by PCAST.” These efforts, repre-
senting a substantial resource commitment, are a collation of the
validation studies from 31 laboratories and demonstrate that
there is support for interpreting a minor contributor much less
than 20%, and in fact down to 0% (present but not observed), of
the total DNA present in the mixture. As the template tends
toward 0, the LR tends to approximately 1.

Disclosure of the Algorithms

An issue that has arisen during court proceedings (or during
discovery requests) is that there is a need to have access to the
source code of PG software to ensure proper peer-review of the
validity/reliability of the software. Use of open source software
has been advocated (for example, by ISFG https://www.isfg.org/)
because:
• It allows all parties (including the defense) to have access to

software, and
• There is a possibility that review by third parties could

improve the code.

Regarding the first point, freeware is accessible without
restriction or cost, which may be desirable to some potential
users. In contrast, commercially available software comes at a
cost but includes continued support and quality control mea-
sures. Users need to evaluate these aspects of open source and
commercially available software when deciding to implement
PG software. Discovery regarding commercial software may
involve the code or an executable program but often with cost
recovery. STRmixTM comes with a user manual and data on vali-
dation associated with the current version. Moreover, STRmixTM

code has been and remains available for court purposes under a
nondisclosure agreement and supervision, but not to competing
software developers. To date, the STRmixTM code has been pro-
vided via this process thrice (102).
While code can be made available for legal proceedings,

informed empirical testing, which is the basis of validation stud-
ies (both developmental and internal), is the best way to assess
performance and critically evaluate the results produced by a
software tool. Indeed, troubleshooting a PG tool by the develop-
ers is typically performed without reference to the source code.
STRmixTM has a facility called “extended output” that is

TABLE 3––A summary of the tests undertaken in the internal validation studies by the FBI.

Number of
contributors

Input DNA range (per
contributor) ng

Contributor ratio
range

Number
interpreted

Number of true
contributors

tested

Number of false
contributors

tested

2 0.006 to 0.9 10:1 to 1:1 105 202 22,504
3 0.021 to 1.0 16:1:1 to 1:1:1 64 192 13,620
4 0.050 to 3.2 16:1:1:1 to 1:1:1:1 84 336 17,808
5 0.016 to 1.25 10:1:1:2:2 to 1:1:1:1:1 24 120 5,256

A selection of 172 one-, two-, and three-person profiles were interpreted as originating from two, three, and four individuals, respectively. The true contribu-
tors and 200 noncontributors were tested. These experiments entertain ratios below that espoused as a threshold by the PCAST Report.
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available to users as a useful assessment and diagnostic tool.
This function outputs the proposed genotypes and other variables
and the probability density for each step in the MCMC process.
One can then attempt to reproduce these values by independent
calculation(s). The code is only accessed to rectify an error, for
example, identified during this extended output review, or to
modify the program.
In response to the second point, one would expect that free-

ware, being more accessible, would enable substantial third-party
improvement. There are a few instances to date, however, where
programming input to open source PG software has occurred
from external parties (e.g., Lab Retriever programmer Kirk Loh-
mueller made suggestions to the LikeLTD programmers (21)
(see pg. 27), while cloning parts of LikeLTD, and David Bald-
ing (personal communication) had input from students). All soft-
ware needs funding for support and development, and
noncommercial software may require public funding or dona-
tions (see https://scieg.org/support-our-work/).
STRmixTM has received input on miscode detection and sug-

gestions for improvement from many sources, such as collabora-
tors, based on empirical testing, or applied usage of the software
and/or extended output functions.
Both commercial and open source software should come with

additional support beyond an accompanying manual. STRmixTM

requires substantial mandatory training provided by experts, as
well as making available a user help desk. As one moves to
more complex ways of interpreting DNA profiles, proper train-
ing is vital to reduce the problems of misuse that may occur.
The risks associated with little, improper, or no training and
quality control are serious and warrant substantial consideration.
This concept was not lost on the Court in a Daubert challenge
ruling, stating (103):

As the source code cannot be altered by anyone except the
programmers, there is an additional layer of internal con-
trols that govern the STRmix’s operation.

Support throughout validation and implementation and partici-
pation in a software user group are also critically beneficial to
the development and execution of reliable standard operating
procedures.

Error Rate

Error and error rate are general scientific issues but also arise
in the forensic setting (error rate of the method is one of the
Daubert admissibility criteria) (38). Determining the error rate is
not always straightforward, largely because error has various
meanings; in DNA interpretation, it is determined very much by
the sample. With sound quality assurance practices and standard
operating procedures derived from judicious validation studies,
error may be addressed and reduced.
In the context of forensic cases, concerns surround false asso-

ciations and false exclusions. A fair justice system would gener-
ally favor a false exclusion over a false association.
Accordingly, overstating the strength of the evidence when a
POI (or victim) cannot be excluded as a potential contributor
should be avoided. In forensic science, a tendency to understate
the evidential weight is termed conservativeness. The STRmixTM

software incorporates key features to drive the LR toward a con-
servative (lower) result.
Most discussions on error rate surround the concepts of a true

state and a declared state. For example, one could input

true donors and see if the software outputs a declaration of “true
donor.” The output of all PG software, however, is not a decla-
ration of true or nondonors but a LR, which is a number on a
continuous scale. This approach differs from a categorical decla-
ration of inclusion or exclusion in a similar manner to how a
probability would differ from a statement of certainty. The result
of a true donor indicated as a nondonor could be termed some-
thing like evidence supporting H2 and a false donor indicated as
a true donor could be termed something like support for H1.
Support for H1 for a noncontributor is directly related to the

strength (or quality) of the DNA profile (76,104). Hence, there
will not be one rate of support for H1 for all DNA profiles
examined by PG but a different rate for each sample.
An important distinction to understand is that support for H1

for a nondonor can be due to the nondonor sharing many alleles
with the profile, which is different from an event of “software
error.” Studies on STRmixTM suggest that the software itself does
not contribute to the support for H1 (76) under this scenario
beyond that expected by overlap of the alleles of the nondonor
and the profile. Some of the best evidence for this comes from
Turing’s rule. Turing’s rule translated to DNA states that the
average LR for a large sample of nondonors should be 1. Trials
with STRmixTM show the average LR to be approximately 1 or,
when various levels of conservancy are included, <1
(76,96,104). Considerable research has been undertaken that
allows informed statements to be made about the potential uncer-
tainty associated with LRs (19,36,67,69). It is very difficult for
operator error of the software or false information about a
known contributor to cause a false inclusion. There are methods,
based on importance sampling (104), that are sufficiently fast
and allow massive (up to 1030 or even greater) nondonor tests to
be run during validation and if needed on a particular case basis.
Importance sampling creates a biased sample by drawing from a
distribution of importance, in the DNA example, these are pro-
files likely to produce high LRs. As the sample is biased, it is
necessary to readjust for the bias after simulation. In a large set
of mixtures compiled from 31 laboratories (96), all large (over
10,000) LRs for nondonors were investigated; in all instances,
the nondonors had high allelic overlap with the profile. This is a
correct result. This empirical assessment of nondonor inclusion
rate provides additional support on the reliability of STRmixTM.
To date, there have been no detected instances of a high LR
using STRmixTM software where there were not also many alleles
in common between the donor and the profile.
There are several situations where a false exclusion (LR <1

for a true donor) may occur:

• The contribution of a true donor is low resulting in only a
few alleles above the analytical threshold, or for other rea-
sons, the PCR does not generate an optimum profile (i.e., the
contributor’s alleles are not detected or are poorly repre-
sented, or stutter heights appear disproportionately due to
stochastic amplification),

• Incorrect typing information for a true contributor(s) is used
in the analysis (to include a sample mix-up) (this can be for
the tested POI or, for a conditioned analysis, another contrib-
utor whose DNA is assumed to be present in a mixture),

• An operator error, notably not removing an artifact before
STRmixTM analysis, or

• The number of contributors assigned is too few.

Diagnostics output by STRmixTM align with human judgment
and thus allow for a human check of the results (a desirable and
recommended feature). In some instances of false exclusions, the
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output data may indicate an LR <1 for a single locus, with high
LRs at all other loci, suggesting a possible error in the input
data. In such situations, or others in which the output from the
software and the human operator disagree, the operator should
review the input data to determine whether they are correct (e.g.,
artifacts removed and alleles properly recorded). A retained arti-
fact should be removed or a mislabeled allele corrected, and PG
should be carried out again.
Although one might suggest that an error rate should be con-

sidered for the software—operator pair, there is in fact no rea-
sonable way to calculate the operator error rate. As the process
described here allows for correction, the reported result of such
a software—operator pair is not an error for which an appropri-
ate rate could be calculated. Any such corrections should be doc-
umented and, together with the output of the software and the
original profile(s), are subject to technical review and, if desired,
other independent review. Lastly, error rates, at best, are some
indirect indication of performance, but are not indicative or pre-
dictive of error in a specific case. The important question is
whether an error occurred in the case, which can best be
addressed by review or by re-calculation, in this situation, of the
PG results (105).

Coding Standards and Miscodes

There are no coding standards designed specifically for foren-
sic software. To date, the software has generally been evaluated
in systems (i.e., testing the overall process for generating reliable
results) and by empirical approaches. Neither the SWGDAM nor
ISFG recommendations on validating PG software require
accreditation by any software standardization organization,
instead seeming to prefer the systems approach for validation.
Coding standards in the wider industry, such as the Institute of
Electrical and Electronics Engineers (IEEE), might provide guid-
ance when testing the performance of software (106). Third-
party assessment, developmental validation studies, internal
validation studies, and adherence to gathering community feed-
back tend to provide more scrutiny than only a single entity
assessment.
As all software programs may have coding faults (miscodes),

even with the most diligent scrutiny, developers, and maintainers
of a software must gather information by continuous testing and
from users to identify miscodes. It is important to be transparent
and disclose any miscodes discovered that affect the numerical
result, so stakeholders are informed and can have confidence that
key software is subjected to critical quality review and is contin-
uously improving. Many probabilistic genotyping software such
as LRmix Studio (107), Lab Retriever (108), STRmixTM (109),
EuroForMix (24), and LikeLTD (21) have disclosed miscodes.
The consequences of miscodes should also be investigated and
disclosed.
Validation testing selects a broad range of samples but cannot

test the myriad possible ways DNA profiles may present in real
forensic casework (11,110). However, one can have confidence
that a breadth of normal usage is well tested, as exemplified by
Bright et al. (96) with more than 2,825 mixtures of DNA from
three to six contributors.

Precision of the Output

Inherent in the validation of forensic methods is the assess-
ment of variability. There has been some misuse of terms

associated with precision. We reprise some definitions in
Table 4, following those of (32,111).
It is well known that measurement error is associated with

diagnostics, such as DNA typing. For example, the highly reli-
able generation of STR results using optimum input amounts of
DNA is considered repeatable and reproducible. Yet, if a sample
was re-amplified or re-injected, no one would expect that pre-
cisely the same peak heights would be obtained and that the var-
ious peaks of a profile would be in the exact same relative
proportions. Precision and accuracy are assessed within some
range of measurement that is determined through validation
studies. These studies are important for determining the limita-
tions of a methodology, including usage of the STRmixTM

software (4).
STRmixTM uses a MCMC resampling method. The MCMC

resampling strategy will create run-to-run variability. For
STRmixTM, the random number generator is run starting from a
seed and, in the default setting, that seed is set from the clock.
Thus, one should expect a degree of variation in the results.
Validation should address the degree of variation as a basis for
determining appropriate operating procedures and reporting
criteria.
Recognition of variability is a positive aspect of PG, or for

that matter any methodology measuring a target of interest. PG
results are based on modeling which is the best attempt available
at producing a rational and supportable answer that is based on
solid mathematics and extensive empirical work. When judgment
is exercised in relation to any modeling decision, we favor deci-
sions that tend to reduce the value of the LR, an approach we
call conservative. Indeed, introducing a continuous DNA inter-
pretation system helped to better recognize the uncertainty inher-
ent in assigning a LR.

Reliability of PG at Low Template

STRmixTM has now been extensively tested on profiles gener-
ated from optimum template levels down to extinction [see in
particular (69,75,76,81,96)], as well as across a range of con-
structed mixture types as encountered in forensic casework with
respect to total template amount (i.e., optimal to trace), contribu-
tor proportions (i.e., similar to disparate relative contributions
within a given mixture), and other features such as allele shar-
ing. The trend is that the LR tends toward 1 for both true donors
and nondonors as peak heights of the contributor in question

TABLE 4––Terms relating to variability.

Repeatability The degree, within measurement error, to which the same
result(s) is obtained for a sample when the assay is
repeated by the same operator and/or detection instrument

Reproducibility The degree, within measurement error, to which the same
result(s) is obtained for a sample when the assay is
repeated between/among different operators and/or
detection instruments

Precision The degree of mutual agreement among a series of
individual measurements, values, and/or results. Precision
depends only on the distribution of random errors and
does not relate to the true value or specified value

Accuracy Degree of conformity of a measured quantity to its actual
(true) value.

Objective Little or no judgment required by the analyst
Subjective Some judgment required by the analyst
Biased A measurement is systematically above or below the true

value

BUCKLETON ET AL. . PROBABILISTIC GENOTYPING 399



become lower. This finding is true whether the other contributors
are also low or high in average peak height. Trials have been
undertaken where the minor contributor is not observable (0%).
In such cases, STRmixTM reports a LR close to 1, usually
between a log(LR) of �3 to 3. These results demonstrate that
STRmixTM reliably reports that the profile is close to uninforma-
tive with respect to whether the POI, at zero template and hence
not there, is a contributor or not.
Moretti et al. (81) reported a total of 277 two-, three-, four-,

and five person mixtures, prepared using DNA from thirteen
contributors with varying individual template amounts (ranging
0.006–3.2 ng) and total template amounts (ranging 0.019–4 ng)
tested using STRmixTM (Table 3). Ratios ranged from equal con-
tributions (i.e., 1:1 to 1:1:1:1:1) to up to a maximum major con-
tribution of approximately 95% (e.g., 20:1), as well as various
intermediate proportions. This study also assessed the effect on
the LR of assigning the number of contributors for STRmixTM

analysis as one more than the target number of contributors. The
word “target” is used herein to mean the number of contributors
input into the mock sample. This usage is differentiated from the
“true” number as one or more of the target contributors may be
in such a low amount that it is not realistically present at all.
Bright et al. (96) reported a large compilation of the results

from 31 different laboratories of internal validation studies of
STRmixTM. There were 2,825 mixtures generated using eight dif-
ferent STR multiplexes and analyzed on two different types of
CE instruments. These mixtures comprised three to six donors,
with contributor templates down to extinction and a wide range
of mixture proportions. The apparent number of contributors as
interpreted by the respective laboratories was assigned as 3, 4,
or 5 for PG analysis. Although some trace contributors were not
observed in the electropherograms, the assigned LRs were appro-
priate based on the data present for each contributor (i.e., tend-
ing to 1 with less information present).
Bright et al. also observed lower LRs for true contributors and

more LRs near 1 for nondonors when the number of assigned

contributors increased. This finding using STRmixTM also was
reported by Taylor (69) and Moretti et al. (81) and demonstrated
that mixed DNA profiles containing more contributors are reli-
ably reported as less informative.
These studies also support that the average peak height (APH)

of the contributor is a good indicator of information content. It
is the low peak heights rather than the extreme ratios that lead
to uninformative profiles. For example, testing two low-level
contributors with similar APHs (a 1:1 mixture) present more of
a challenge to the software than does a 1:20 mixture, as the
genotype of the higher contributor has less uncertainty and helps
to inform the genotype of the lower contributor. The PCAST
position placed significance solely on contributor ratio, ignoring
the important component of template amount. Empirical testing
(81,96) demonstrates that the positions stated in the PCAST
Report are unsupported and the use of complete data should be
considered when evaluating performance of PG software. Typi-
cal results are shown in Fig. 1. The LR tends to approximately,
but not exactly, 1 for both true and nondonors as the template is
reduced. This is the correct result.

Number of Contributors (NoC)

The number of contributors to a DNA mixture profile from a
casework sample is typically unknown and is correctly described
as a nuisance variable. A nuisance variable is something needed
to do the computation but not available directly from the data.
However, depending on the typing results, assigning a NoC to a
DNA mixture can range from fairly straightforward to particu-
larly challenging. When the assignment of NoC is more chal-
lenging, there are approaches (described herein) available that
can provide results that tend to understate the strength of the evi-
dence.
There are two general LR approaches in use, often driven by

the capabilities of the software. These are as follows:
• Assigning a NoC that is the same under both H1 and H2 (ter-

med constrained NoC).
• Allowing the NoC under each proposition to differ (termed

unconstrained NoC).

Constrained NoC

Under this process, a NoC is assigned to the profile based on
the number of allelic peaks and their heights, often after consid-
eration of artifacts. While most constrained NoC determinations
are performed manually, there are software tools available to
assist if needed, such as NOCIt (112) based on Monte Carlo
methods, PACE (113) based on machine learning, and methods
using Bayesian networks (114) and maximum likelihood (115).
Herein, only assignment of NoC by a human operator is dis-

cussed (initially drop-in is not considered to simplify the discus-
sion). The DNA profile should be examined and any obvious
artifacts such as spikes and pull-up discounted. Peaks in back or
forward stutter positions below some preset value derived from
internal validation may be considered stutter, or stutter and alle-
lic. If considered solely stutter, such peaks can be discounted in
determining NoC. The peaks that remain should be considered
potentially allelic. The minimum NoC may be determined based
on peak count alone. It is important, then, to consider whether
the observed peak heights of the alleles can be supported by this
preliminary assignment. If peak imbalances are unrealistic with
the preliminary NoC, then at least one additional contributor
should be added. After this initial review of the evidentiary

FIG. 1––A plot of log10(LR) vs. template (pg) for each donor in a four-per-
son mixture, prepared across a range of template amounts and contributor
ratios, tested using STRmixTM. For the nondonor tests, the template is
assigned as the lowest template of the four true donors. For those samples
with template above 1 pg, 194 nondonors were tested against the profile. We
have also added a fictional contributor, effectively at template 0 pg and
tested against 100,000 nondonors. Due to plotting limitations, these samples
are represented in this plot at template 0.5 pg. For the true donor tests, the
data have been divided into proportion above 10% (high N = 275) and
those with proportion below 10% and down to 0% (low N = 72). As the
template diminishes, the LRs for both the true and noncontributors tend
toward 1 (a log(LR) of zero is marked with a central horizontal line in the
graph). [Color figure can be viewed at wileyonlinelibrary.com]
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DNA profile, it is desirable to determine which, if any, contribu-
tors should be expected under both H1 and H2. This assessment
may include, for example, the victim and a consensual partner.
The profile of the POI should not be examined at this stage.
Depending on the laboratory’s internal validation studies

assessing detection sensitivity and allele drop-in, few trace peaks
may be discounted for the NoC assignment as potentially being
attributed to drop-in. This is usually fewer than a preset number
(often only up to two are permitted) and lower than a height
established from empirical studies. Although discounted when
assigning NoC, these peaks must not be discounted from the
analysis of evidential value.
With this general process, a reasonable NoC can be assigned,

but there is no guarantee that this estimate is the actual NoC of
the sample. Confidence in the assignment varies depending on
the complexity of the mixture. Fortunately, any reasonable dis-
crepancy in NoC assignment seems to have a minor effect on
the deconvolution or LR (36,67,81,96).
Even for controlled studies, such as those performed during

validation, the actual NoC used to generate a mixture (target N)
may not be the same as the number observed in the mixture (N).
Simply stated: low-level contributors may be too low to observe,
because a minimum amount of template is needed for any DNA
sample to be detectable. Hence, even in mock samples, the num-
ber of contributors may not be accurately represented (note that
these issues relate to the minor and trace contributors, as major
contributors tend to be well represented in mock samples).
The internal validation compilation study (96) described this

effect of estimating various NoC to a mixture. Figure 2 (derived
from fig. 13 of Bright et al. 96) shows the level of over and
underestimation of the apparent NoC (N) determined following
the individual laboratories’ protocols compared to the target N in
their respective studies. Overestimation of N generally led to
similar or lower LRs for true contributors. Underestimation of N
resulted in exclusions of true contributors, usually affecting the
lower/lowest quantity contributor(s).
These data support the view that when assigning N, for false

contributors, the risk is overestimation of N, as there is an
increase in the number of very low-grade adventitious hits. With
respect to the LR for true contributors, when N is either under or
overestimated, the result is conservative. Hence, if the LR is
large, for example, larger than 1000 and there is uncertainty in
N, there is confidence in the LR if N is correct and if not correct,

the LR is more conservative than the already built in buffers
[such as the use of a conservative population genetic model
(116) and reporting a lower bound on the LR (117)].
Moretti et al. (81) reported the effect on the LR of assuming

an incorrect N by both increasing (N+1) and decreasing (N�1)
from the most plausible number. For the N+1 tests, 27 total one-,
two-, and three-person profiles were interpreted as originating
from two, three, and four individuals, respectively. The LR was
calculated for both true contributors and 200 noncontributors,
which then were converted to lower bounds on the LR. For true
contributors (H1-true), the majority of lower bounds on the LRs
under the assumptions of N and N+1 contributors were similar
(within one order of magnitude); for 13% of the analyses, the
lower bound on the LR decreased by more than one order of
magnitude. With regard to noncontributors under the incorrect
assumption of an additional contributor, fewer were excluded
outright, though overall 94.3% returned lower bounds on the LR
<1.
As a means of examining the impact of assuming too few

contributors without returning an exclusion outright, Moretti
et al. (81) artificially created three mixtures from a two-person
mixture (1:5 contributor ratio) by adding a “third” contributor in
the range 50–200 rfu, constructed as if it was a child of the two
true contributors. The resulting LRs for the major or minor con-
tributor were not affected by the addition of a third contributor
at any of the three average peak heights. All noncontributors
resulted in exclusions (LR = 0). Note that a LR = 0 is a practi-
cal rounding off, as in theory a LR should not be assigned a
value of 0 (81).
Management of the uncertainty of NoC in real casework (usu-

ally for complex profiles or low-level contributors) is easily
achieved by testing plausible values for NoC. All outcomes of
plausible analyses should be retained, and one or a few may be
reported.
It may be tempting to revisit the NoC after examination of the

POI’s profile. For example, it may be possible to sustain the
inclusion of the POI by adding a contributor. This approach can-
not be entertained with software that uses the constrained NoC
approach.

Unconstrained NoC

There is no requirement for the contributor (H1) and noncon-
tributor (H2) hypotheses to specify the same number of contribu-
tors when calculating LRs. Some PG, for example, LRmix,
LikeLTD, and Lab Retriever, can perform calculations with dif-
ferent NoC for each proposition.
Under this approach, when considering NoC under H1

whether by human judgment or software, the genotype of the
POI may be considered. This may lead to the situation where
NOC under H1 is one larger than under H2 in order to accom-
modate the POI. We are unaware of any publications addressing
the likely effect of this approach.
Software implementing the unconstrained NoC approach can

also test an increase in NoC under H2 while leaving NoC under
H1 at the assigned value. Again we are unaware of a publication
outlining the effect of this.
Recently, Slooten and Caliebe (118) published a result that is

likely to advance this discussion. If we consider a constrained
NoC, then there will be different LRs for each value of the NoC
(termed LRn where n is the NoC). We want the overall LR
which we define as the LR where the number of contributors is
not known and is treated, correctly, as a nuisance variable.

FIG. 2––Heat map of the fraction of prepared DNA mixtures as interpreted
with various differences between the apparent number of contributors (NoC)
and the target number (target NoC). The higher numbers are blue and the
lower numbers red. [Color figure can be viewed at wileyonlinelibrary.com]
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Slooten and Caliebe show that the overall LR is the weighted
average of the LRn values under one reasonable assumption that
we discuss later. This is a useful finding.
In their simplest solution (they offer several), the weights for

the weighted average are Pr(N = n|GC, GP, H2) where GC is the
profile of the crime stain and GP is the profile of the POI. As
we consider H2, GP can be removed from the conditioning yield-
ing Pr(N = n|GC, H2). It is likely that only a few values of n
need to be considered, maybe often only one or two.
The assumption that leads to this result is that n is equally

likely under H1 and H2, specifically Pr(N = n|H1) = Pr(N = n|
H2). Note that the conditioning does not contain Gc or Gs and
hence is informed only by whether or not the POI is a donor.
This assumption is likely to be true or approximately true in the
vast majority of cases.

Subjectivity

Some have suggested that subjectivity equates with bias with
attendant negative outcomes. Instead, subjectivity does not auto-
matically imply a bias that will result in an error, and objectivity
does not automatically imply an absence of bias that will render
an interpretation free from error. The forensic community has
begun to appreciate the risks of contextual and conformational
bias and is attempting to address these risks and their potential
negative effects in a number of ways (see 119 for a discussion).
As an example, the use of suspect-driven bias is clearly an unac-
ceptable practice for deciding which loci in a mixture profile
may exhibit allele dropout (2,120).
However, the stark view that subjectivity equates to commit-

ting error belies the current thinking about cognitive bias. As
Jeanguenat et al. (119) recently reminded readers:

Cognitive contamination or bias is inherent in all human
beings due to the architecture and operation of the brain.
However, it is important to understand that although bias
exists it does not always result in an incorrect interpreta-
tion, just as enacting bias reduction steps will not guarantee
that laboratory results will be error free. Nevertheless,
forensic scientists should continue to improve and seek
mechanisms to minimize error due to bias.

The idea that subjectivity will inevitably lead to unfair out-
comes is incorrect. Indeed, there are methods that have been
invoked with intentional bias. For example, some practitioners
have generally set stochastic thresholds (STs) rather high to
reduce the chances of declaring a false match to a reference sam-
ple, at the expense of producing more inconclusive results.
SWGDAM defines the ST as “the value above which it is rea-
sonable to assume that allelic dropout has not occurred within a
single-source sample” (121). While such a practice does not
make use of some potentially useful data, it is “biased” to avoid
a more egregious error (i.e., a false inclusion).
The best approach to control the potential negative effects of

bias is by providing proper training and education to DNA ana-
lysts using these software tools. All humans are susceptible to
various biases, and forensic scientists are no exception (119).
The more cognizant individuals are to the risks of bias, the bet-
ter they will be able to develop strategies and procedures to min-
imize their effects. Thinking that one can overcome bias by
force of will is a dangerous misconception.
Many PG programs are designed intentionally to yield a

lower bound on the LR that factors in several elements of

uncertainty and thereby “biases” the analysis toward conser-
vatism (i.e., reduced statistical weight). For example, in
STRmixTM, the highest posterior density (HPD) LR, which if
enabled, accounts for the expected amount of run-to-run varia-
tion from the Monte Carlo effect and variation in allele proba-
bilities (122). In addition, most PG programs use the
population genetic model of Balding and Nichols (123) or
close variations. This model has been shown to result in LRs
that are conservative (116,124–126) and is used in TrueAllele�,
LRmix, STRmixTM, EuroForMix, and LikeLTD. A close
approximation is used in Lab Retriever. Another key parameter
in the population genetic model is the coancestry coefficient h,
which is typically set in a way that tends toward lowering the
LR result. It is either set toward the upper end of the plausible
range, or a distribution is used based on a diverse set of popu-
lations (34). LRmix and LikeLTD utilize the size bias correc-
tion described by Balding (127) which produces conservative
assignments on average. Balding (128) described a way to
combine the contribution of various relatives and unrelated peo-
ple, which is implemented in STRmixTM (72) and can be set to
give an allowance regarding relatedness. Together or separately,
all these features are biased toward cautious statements of evi-
dential weight in relation to the contributor proposition. Soft-
ware has been proposed as a way to eliminate bias by
promoting that it is completely objective. This assertion is
problematic in that it does not appreciate the effects of bias
and dissuades one from embracing the need to consider bias.
No one is impervious to bias including those that develop soft-
ware. While software allows for better repeatability and repro-
ducibility, one should be cognizant that those who develop the
software have inserted their own ideas about how the program
works best, such as what aspects to weight more so than
others. Users of PG software should be informed about the
limitations of the software and potential pitfalls and not rely
exclusively on software output. Users must apply their training
and expertise in DNA profile interpretation and evaluate the
software output by visually comparing the PG results with the
original DNA profile. For most profiles, the PG results can be
assessed to be intuitively correct, or not, by a properly trained
DNA analyst. If one were to rely solely and blindly on the PG
output, error could occur. For example, a false exclusion of a
POI due to incomplete resolution of a TH01 minor 10 allele
from the major contributor’s 9.3 allele was shown by Moretti
et al. (81) This “false exclusion” was a limitation of CE instru-
ment resolution and not due to the PG software. However,
Moretti et al. (81) overcame the limitation with an accompany-
ing manual assessment.
To summarize the issues of bias:

• Bias is an inherent characteristic of human beings.
• Training about cognitive bias is an important aspect of good

science, and particularly so for forensic science.
• Software can have inherent bias, some of which is desirable.
• Some PG developers and many users are trained on aspects

where bias can impact the decision process.
• Additional review beyond relying solely on software output

is recommended as an additional layer to reduce the effects
of bias.

PG software removes some decisions or gives substantial sup-
port to these decisions. Remaining aspects of subjectivity in
STRmixTM include some artifact management of spikes and pull-
up at the initial analysis of the electropherogram and an assign-
ment of an exact or approximate number of contributors.
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Recently, an interlaboratory study was published (129) that
reports the results of 15 different laboratories using LRmix on
the same profile. This profile had been constructed from donors
with features deliberately chosen to make interpretation difficult
(personal communication, MC M�arquez). The LRs reported vary
between 2.6 9 103 and 3.2 9 1014. This range drew attention in
court and suggested some fault in PG. However, the paper
clearly describes that the variation arises not from the software
but from subjective decisions regarding allele and stutter deter-
minations (see fig. 1 from 129). This finding supports the use of
models for stutter as in STRmixTM rather than relying solely on
subjective human decisions and may also indicate a need for
training that should accompany use of software.

Conclusion

PG had been in gestation for some time from before 2000 (5).
The first forensic DNA case of which we are aware that utilized
PG methods occurred with TrueAllele� in 2009. Large-scale
deployment of PG software, and STRmixTM, in particular, to
forensic laboratories began in 2012. The efforts to bring PG to
fruition, including the initial theoretical development for human
identification applications based on STR typing (5–8), span
almost two decades, and thus its use today should not be mis-
construed as some sudden novel technology. To the contrary,
with the maturation of STR typing technologies, great strides in
the application of probabilistic solutions to biological phenom-
ena, and the development of several software options, the “com-
ing of age” of PG has been recognized by forensic laboratories.
Facilitated by guidance documents from SWGDAM for validat-
ing PG systems in 2015 (4), followed by the European Network
of Forensic Science Institutes (ENFSI) in 2017 (130), empirical
studies performed by many have demonstrated the utility and
reliability of PG for mixture analysis and enabled the implemen-
tation of reliable procedures for the application of this technol-
ogy to forensic casework.
Our goal in this study was to provide and address information

and issues that relate to PG in general and STRmixTM in particu-
lar through our own experience. Our intent is to be informative.
By understanding the strengths and limitations of any PG soft-
ware, users and stakeholders will better understand the system
and hopefully use it in a thoughtful manner for the public good.
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